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Abstract. Speckle artifacts can strongly hamper quantitative analysis of optical coherence tomography (OCT),
which is necessary to provide assessment of ocular disorders associated with vision loss. Here, we introduce a
method for speckle reduction, which leverages from low-rank + sparsity decomposition (LRpSD) of the logarithm
of intensity OCT images. In particular, we combine nonconvex regularization-based low-rank approximation of
an original OCT image with a sparsity term that incorporates the speckle. State-of-the-art methods for LRpSD
require a priori knowledge of a rank and approximate it with nuclear norm, which is not an accurate rank indicator.
As opposed to that, the proposed method provides more accurate approximation of a rank through the use of
nonconvex regularization that induces sparse approximation of singular values. Furthermore, a rank value is not
required to be known a priori. This, in turn, yields an automatic and computationally more efficient method for
speckle reduction, which yields the OCT image with improved contrast-to-noise ratio, contrast and edge fidelity.
The source code will be available at www.mipav.net/English/research/research.html. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.076008]
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1 Introduction
Optical coherence tomography (OCT) resolves optical reflec-
tions from internal structures in biological tissues by means
of noninvasive low-coherence light.1 Quantification of optical
properties of the tissue enables discrimination of different tis-
sues or different pathological states of tissue.2,3 This, further-
more, enables characterization of pathological states such as
cystoid macular edema,4 central retinal artery occlusion,5 and
atherosclerosis plaques.6 However, the large contrast and granu-
lar appearance of speckle stands for a major obstacle in quanti-
tative OCT image analysis.7–9 Speckle is inherent random signal
modulation caused by spatial and temporal coherence of the
optical waves that at the same time is a basis for interferometry,
the measurement technique on which OCT is based.7,9,10 Thus,
speckle has a dual role as a source of noise and as a carrier of
information about tissue microstructure.9 Hence, complete
speckle reduction is not desirable. On the other side, with bio-
logical specimens, speckle reduces contrast and makes bounda-
ries between constitutive tissues more difficult to resolve.7,9,11

Speckle reduction techniques generally belong to two groups:
physical compounding and digital filtering.7,12 The former
group reduces speckle by incoherently summing different real-
izations of the same OCT image.13–15 These strategies achieve
OCT image quality improvement proportional to the square root
of the number of realizations. Digital filtering techniques aim to
reduce speckle through postprocessing of an OCT image, while
preserving image resolution, contrast, and edge fidelity (mea-
sured by sharpness in this paper).16–18 However, as it is demon-
strated in Sec. 3, state-of-the-art digital filtering methods, such
as median filtering, can even decrease sharpness when reducing

speckle [see also Fig. 1(g)]. Here, we propose a low-rank + spar-
sity decomposition (LRpSD) method to reduce speckle in OCT
images. It leverages LRpSD of logarithm of intensity OCT
images. Since speckle can be considered as multiplicative
noise on a signal,7 logarithm of the original OCT image X yields
logðXÞ ¼ logðLÞ þ logðSÞ, where L and S, respectively, re-
present a “clean” OCT image and speckle. To simplify further
exposition, we shall slightly abuse notation through substitu-
tions: logðXÞ → X, logðLÞ → L, and logðSÞ → S. Hence, it is
assumed that an original OCT image is represented in the log-
arithmic domain as well as that the result of the image enhance-
ment procedure is raised to an exponential. That is, L̂ → expðL̂Þ
and Ŝ → expðŜÞ, where the hat denotes estimation of the corre-
sponding variable. Hence, we represent the OCT image as
X ¼ Lþ S. Due to the random nature of the scattering, the
speckle associated with the matrix S has sparse spatial distribu-
tion. Since the clean OCT image carries information on tissue
microstructure, the matrix L has a structure. Thus, L can be con-
sidered as a low-rank approximation of X. Low-rank matrix
approximation (LRMA) with or without additional sparsity
term is a fundamental problem in many signal processing
applications.19 It is a crucial step in many machine
learning20–25 and signal processing26–28 applications. Exact
decomposition X ¼ Lþ S has been known under the name
robust principal component analysis (RPCA)29 or rank-sparsity
decomposition.30 However, as properly noted in Ref. 20, adding
the “noise” term G to the RPCA model, i.e., X ¼ Lþ SþG,
yields a model capable of describing empirical data more real-
istically. The “noise” term G can also be interpreted as a mod-
eling error, i.e., it partially takes into account imperfections of
the original RPCA model. The fundamental issue in low-rank
approximations is that, due to discontinuous and nonconvex
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nature of the rank function, rank minimization is a nondetermin-
istic polynomial-time (NP) hard problem. Thus, the discrete NP-
hard rank minimization problem is often replaced by convex
relaxation29,31,32 known as nuclear- or Schatten-1 norm.22,33

However, nuclear norm approximates rank with the sum of sin-
gular values, and that is known to be inaccurate.34–36 In addition
to that, since they require a priori information on the rank value,
low-rank approximation methods proposed in Refs. 20 and 21
exhibit high computational complexity when the true value of
the rank is not known a priori. Several recent studies have
emphasized the benefit of nonconvex penalty functions com-
pared to the nuclear norm for the estimation of the singular
values.19,31,34–36 In particular, it has been presented in Ref. 19
how nonconvex regularization, which promotes more sparse
approximation of singular values,37 can be combined into
a convex optimization problem related to the estimation of

the low-rank matrices. Herein, we combine nonconvex
regularization19 with sparsity constraint for LRpSD in the pres-
ence of additive white Gaussian noise (AWGN), i.e., X ¼
Lþ SþG, where G stands for the AWGN with an unknown
variance. In addition to yielding more accurate low-rank
approximation L of X, which in turn yields the OCT image
with improved contrast-to-noise ratio (CNR), signal-to-noise
ratio (SNR), contrast, and edge fidelity, the proposed method
does not assume a priori information on the rank value. These
also are the main distinctions between the proposed LRpSD
method and RPCA method in OCT image enhancement.38,39

These distinctions contribute to computational efficiency in
comparison with LRpSD algorithms such as Refs. 20 and 21.
The proposed method is illustrated in Figs. 1(a) to 1(c). For
the sake of visual comparison, we present, in respective order,
in Figs. 1(d) to 1(g) the results of OCT image enhancement by

Fig. 1 (a) to (c) Flow chart of the “low-rank + sparsity” decomposition approach to speckle reduction in
OCT images. Information on image quality metrics, such as CNR, SNR in dB, contrast, and sharpness,
can be found in Sec. 2.3. (a) Original OCT image: CNR = 3.61, SNR = 26.23, contrast = 1.14, sharpness
= 56.90. (b) Enhanced low-rank approximation of OCT image by proposed algorithm: CNR = 4.17, SNR
= 32.26, contrast = 1.44, and sharpness = 61.46. (c) Sparse term containing speckle. (d) OCT image
enhanced by the GoDec algorithm (rank = 35):20 CNR = 4.59, SNR = 32.52, contrast = 1.71, and sharp-
ness = 49.01. (e) OCT image enhanced by the RNSC algorithm (rank = 35):21 CNR = 4.31, SNR =
30.61, contrast = 1.43, and sharpness = 55.72. (f) OCT image enhanced by bilateral filtering: CNR
= 4.17, SNR = 35.82, contrast = 1.65, and sharpness = 59.79. (g) OCT image enhanced by median
filtering: CNR = 4.5, SNR = 30.78, contrast = 1.59, and sharpness = 36.14. For visual comparison,
OCT images (a) to (g) were mapped to [0 1] interval with the MATLAB mat2gray command from
the interval corresponding to minimal and maximal values of each specific case. The best value for
each figure of merit is in bold.
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algorithms derived in Refs. 20 and 21, as well as by two-dimen-
sional (2-D) bilateral and median filtering (see Sec. 3 for more
details).

The rest of this paper is organized as follows. The details of
the proposed method for LRpSD are presented in Sec. 2. That is
followed by an experimental comparative performance analysis
in Sec. 3 and the discussion in Sec. 4. The conclusions are pre-
sented in Sec. 5.

2 Materials and Methods

2.1 Related Works

Let X ∈ RI1×I2
0þ be one scan of the OCT image with the size of

I1 × I2 pixels. The speckle, which occurs due to the random
scattering of the light on tissues, acts effectively as multiplica-
tive noise.7 That is,xði1; i2Þ ¼ lði1; i2Þ × sði1; i2Þ, where ði1; i2Þ
stands for pixel coordinates and xði1; i2Þ stands for the intensity
value at ði1; i2Þ. By taking the log of xði1; i2Þ we obtain

EQ-TARGET;temp:intralink-;e001;63;551 log xði1; i2Þ ¼ log lði1; i2Þ þ log sði1; i2Þ: (1)

With the slight abuse of notation, we rewrite Eq. (1) on the
matrix level as

EQ-TARGET;temp:intralink-;e002;63;499X ¼ Lþ SþG; (2)

where in relation to Eq. (1), the AWGN term G with zero mean
and unknown variance σ2 have been added. As discussed pre-
viously, G can also be considered as a modeling error that par-
tially takes into account imperfections of the model. Due to the
random nature of the scattering, the speckle associated with the
matrix S has sparse spatial distribution. Thus, the matrix L rep-
resents the “clean” OCT image that contains information on tis-
sue microstructure. Hence, it is justified to assume that L is a
low-rank approximation ofX.38,39 Thus, reduction of the speckle
within the OCT image can be seen as decomposition of the
empirical data matrix (OCT image) X into low-rank matrix L
and sparse matrix S. The LRpSD problem [Eq. (2)] can
be seen as a composition of two separate problems: the
LRMA problem X ¼ LþG that appears in many signal
processing applications,19,36,40–42 and sparsity constrained signal
reconstruction corrupted with the AWGN, X ¼ SþG.43–46

Thus, estimation of the low-rank matrix L and sparse matrix
S is expressed as the following optimization problem:

EQ-TARGET;temp:intralink-;e003;63;271min
L;S

rankðLÞ þ τkSk0 subject to X ¼ Lþ SþG; (3)

where k · k0 counts the number of nonzero entries of S and
τ > 0 is a tuning parameter. The rank minimization problem
is NP-hard. Minimization of the number of nonzero entries is
an NP-hard problem as well. Thus, the optimization problem
[Eq. (3)] is often replaced by convex relaxation29,31

EQ-TARGET;temp:intralink-;e004;63;179min
L;S

X
i

σiðLÞ þ τkSk1 subject to X ¼ Lþ SþG: (4)

The first term is the l1-norm of the vector σðLÞ of singular val-
ues of L, and it is known as the nuclear- or Schatten-1 norm of
L.22,33 It represents convex relaxation of the rank minimization
problem.32 The second term is the l1-norm of the matrix S and
it represents convex relaxation of the kSk0 minimization
problem.46 The optimization problem [Eq. (4)] is converted
into the following optimization equation:

EQ-TARGET;temp:intralink-;e005;326;752min
L;S

�
ΨðL; SÞ ¼ 1

2
kX − L − Sk2F þ λ

X
i

σiðLÞ þ τkSk1
�
;

(5)

where λ is a regularization constant that determines relative
importance of the rank penalty term. The solution of the nuclear
norm minimization problem, when S is fixed, is obtained
directly using the singular value decomposition (SVD) of the
matrix X − S ¼ UΣVT . It is given with

EQ-TARGET;temp:intralink-;e006;326;648L̂ ¼ U softðΣ; λÞVT; (6)

where softðΣ; λÞ is the soft-thresholding function47 applied to
the singular values of X − S. The solution [Eq. (6)] is known
as the “singular value thresholding” (SVT) method.48

Solution of the kSk1 minimization problem, when L is fixed,
is obtained directly as

EQ-TARGET;temp:intralink-;e007;326;560Ŝ ¼ softðX − L; τÞ; (7)

where softðX − L; τÞ is the soft-thresholding function applied
entry-wise to the matrix X − L. As emphasized in Refs. 20
and 49, the SVT method tends to underestimate the nonzero
singular values. Thus, nuclear norm-based solutions of the
low-rank approximation problem will exhibit decreased accu-
racy in estimation of the “clean” OCT image L.

2.2 Nonconvex Regularization for Low-Rank +
Sparsity Decomposition

Several recent studies have emphasized the benefit of nonconvex
penalty functions compared to the nuclear norm for the estimation
of the singular values.19,31,34–37 In particular, it has been presented
in Ref. 19 how nonconvex regularization, which promotes more
sparse approximation of singular values,40 can be combined into
a convex optimization problem related to the estimation of the
low-rank matrices. The LRMA problem is formulated as19

EQ-TARGET;temp:intralink-;e008;326;342min
L

�
ΨðLÞ ¼ 1

2
kX − Lk2F þ λ

Xk
i¼1

ϕ½σiðLÞ; a�
�
; (8)

where k ¼ minðI1; I2Þ and ϕ is the sparsity-inducing regularizer,
possibly nonconvex. To estimate nonzero singular values more
accurately and induce sparsity more effectively than the nuclear
norm, nonconvex penalty functions parameterized by the param-
eter a ≥ 0 are used.19,50 Assumption 1 in Ref. 19 defines condi-
tions that ϕ∶R → R have to satisfy. An example of a penalty
function ϕ satisfying assumption 1 is the partly quadratic penalty
function19,51,52

EQ-TARGET;temp:intralink-;e009;326;211ϕðx; aÞ ≔
(
jxj − a

2
x2; jxj ≤ 1

a
1
2a ; jxj ≥ 1

a
. (9)

According to definition 1 in Ref. 19, see also Ref. 53, the
proximal operator of ϕ, θ∶R → R, is defined as

EQ-TARGET;temp:intralink-;e010;326;138θðy; λ; aÞ ≔ arg min
x∈R

�
1

2
ðy − xÞ2 þ λϕðx; aÞ

�
: (10)

If 0 ≤ a < 1∕λ, then θ is continuous nonlinear threshold func-
tion with threshold value λ, i.e.,
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EQ-TARGET;temp:intralink-;e011;63;752θðy; λ; aÞ ¼ 0; ∀ jyj < λ: (11)

The proximal operator of the partly quadratic penalty
[Eq. (9)] is the firm threshold function defined as54

EQ-TARGET;temp:intralink-;e012;63;713θðy; λ; aÞ ≔ minfjyj;max½ðjyj − λÞ∕ð1 − aλÞ; 0�gsignðyÞ:
(12)

In case of matrixX, notation θðX; λ; aÞ implies that the proxi-
mal operator is applied element-wise to X. In addition to partly
quadratic penalty function [Eq. (9)], other functions, such as
logarithmic function,50 can be used as nonconvex penalty func-
tion in Eq. (8). However, the partly quadratic function [Eq. (9)]
yielded best experimental results presented in Sec. 3. Thus, we
shall not elaborate further on nonconvex penalty functions.
According to theorem 2 in Ref. 19 the LRMA problem
[Eq. (8)] has globally optimal solution

EQ-TARGET;temp:intralink-;e013;63;578L̂ ¼ U · θðΣ; λ; aÞ · VT; (13)

where the threshold function θ is associated with the nonconvex
penalty function ϕ. We now use this result to obtain a more
accurate solution to the problem [Eq. (3)]. In this regard, we
substitute nuclear norm term in Eq. (5) with the nonconvex pen-
alty from Eq. (8) and that yields

EQ-TARGET;temp:intralink-;e014;63;491min
L;S

�
ΨðL; SÞ

¼ 1

2
kX − L − Sk2F þ λ

Xk
i¼1

ϕ½σiðLÞ; a� þ τkSk1
�
: (14)

The optimization problem [Eq. (14)] can be seen as a special
case of the more general linearly constrained convex program55

EQ-TARGET;temp:intralink-;e015;63;391min
L;S

fðLÞþ gðSÞ subject to AðLÞþBðSÞ ¼LþS¼X−G;

(15)

where fðLÞ ¼ λ
P

k
i¼1 ϕ½σiðLÞ; a� and gðSÞ ¼ τkSk1. When

AðLÞ and BðSÞ in Eq. (15) are identity operators, i.e., AðLÞ ¼
L and BðSÞ ¼ S, the problem [Eq. (15)] can be solved by
the alternating direction method of multipliers (ADMM).
For this purpose, the augmented Lagrangian function is
formulated56
EQ-TARGET;temp:intralink-;e016;63;275

LðL; S;ΛÞ ¼ λ
Xk
i¼1

ϕ½σiðLÞ; a� þ τkSk1 þ hΛ;Lþ S − Xi

þ β

2
kLþ S − Xk2F; (16)

where Λ is the matrix of Lagrange multipliers and β is the pen-
alty parameter. The ADMM decomposes the minimization of L
with respect to (L; S) into two subproblems that minimize with
respect to L and S, respectively55

EQ-TARGET;temp:intralink-;e017;63;162

Lt ¼ arg min
L

LðL; St−1;Λt−1Þ

¼ arg min
L

λ
Xk
i¼1

ϕ½σiðLÞ; a�

þ β

2

����Lþ St−1 − Xþ Λt−1

β

����2
F
; (17)

EQ-TARGET;temp:intralink-;e018;326;741

St ¼ arg min
S
LðLt; S;Λt−1Þ

¼ arg min
S
τkSk1 þ

β

2

����Lt þ S − Xþ Λt−1

β

����2
F
; (18)

EQ-TARGET;temp:intralink-;e019;326;687Λt ¼ Λt−1 þ β½Lt þ St − X�; (19)

where in Eqs. (17) to (19) t stands for an iteration index. The
subproblem [Eq. (17)] is actually the LRMA problem [Eq. (8)]
that admits optimal closed form solution given by Eq. (13)

EQ-TARGET;temp:intralink-;e020;326;628L̂ ¼ U · θðΣ; λ; aÞ · VT; (20)

for the SVD of

EQ-TARGET;temp:intralink-;e021;326;584X − St−1 −
Λt−1

β
¼ UΣVT: (21)

The subproblem [Eq. (18)] admits the optimal solution in the
form of Eq. (7)

EQ-TARGET;temp:intralink-;e022;326;524Ŝt ¼ soft

�
X − Lt −

Λt−1

β
; τ

�
: (22)

We name the proposed algorithm enhanced LRpSD
(ELRpSD) algorithm. It is summarized in Algorithm 1.

2.3 Performance Measure

To quantify the performance of speckle reduction algorithms,
appropriate measures have to be defined. In the case of an
OCT image, the most commonly used figure of merit is
CNR.7,9 It corresponds to the inverse of the speckle fluctuation
and it is defined as CNR ¼ μlðXÞ∕σlðXÞ, where μlðXÞ and
σlðXÞ, respectively, correspond to the mean and standard

Algorithm 1 The ELRpSD algorithm.

Input: logarithm of acquired OCT image X ∈ RI1×I2 with the size
of I1 × I2 pixels, regularization constant τ related to speckle term
S in Eqs. (14)/(16); regularization constant λ related to low-rank
approximation term L in Eqs. (14)/(16). Suggested values: τ ¼ 0.1;
λ ¼ 5.

Suggested value for the penalty parameter β in Eq. (16): β ¼ 1.
Suggested value for constant a in Eqs. (9) to (13): a ¼ 0.6∕λ.

1. Lð0Þ ¼ X; Sð0Þ ¼ 0; Λð0Þ ¼ 0; t ¼ 1.

2. while not converge do

3. Execute SVD Eq. (21).

4. Update L using Eq. (20).

5. Update S using Eq. (22).

6. Update Λ using Eq. (19).

7. t←t þ 1

8. end while

Output: L←Lðtþ1Þ, S←Sðtþ1Þ.
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deviation in some selected homogeneous part of the image X.
Experimental results reported in Sec. 3 were estimated in the
region that corresponds with the top most layer in the OCT
image of a retina, which is indicated in Fig. 1 by an
arrow.5,57 Since the goal of postprocessing algorithms is not
only to reduce speckle but also to preserve image resolution,
contrast, and edge fidelity,7 we also estimate contrast, sharpness
as well as SNR measures directly from the image. Sharpness is
the attribute related to the preservation of fine details (edges) in
an image. Contrast is defined as the ratio of the maximum and
the minimum intensity of the entire image.58 It reflects the
strength of the noise or modeling error term G. Up to some
extent, it can be considered as an image quality measure that
coincides with the SNR quality measure. Technical details on
estimation of sharpness and contrast can be found in
Refs. 28 and 58. We estimated sharpness in the entire retinal
region from the first (top most) to the tenth (bottom most)
layer. Contrast was estimated from the whole image. By
following Ref. 18, global SNR value was estimated as
SNR ¼ 10 log½max ðXlinÞ2∕σ2lin�, where Xlin is the OCT
image on a linear intensity scale and σ2lin, such that the noise
variance was estimated on a region between top of the image
and the topmost layer.

3 Experiments and Results

3.1 Algorithms for Comparison and Optical
Coherence Tomography Image Acquisition

We compare the proposed ELRpSD algorithm with the “Go
Decomposition” (GoDec) algorithm,20 which solves the optimi-
zation problem [Eq. (4)] with the kSk1 term replaced with kSk0
and τ standing for a fraction of the nonzero coefficients of S
relative to the overall number of coefficients, which is
I1 × I2; the semisoft version of the GoDec algorithm
(SSGoDec), which solves the problem [Eq. (4)]; the rank N
soft constraint (RNSC) for RPCA algorithm,21 which is using
partial sum of singular values for more accurate approximation,
compared with nuclear norm, of a target rank value; that are used
to suppress sparsely distributed noise such as speckle. The
MATLAB code for the GoDec and SSGoDec algorithms has
been downloaded from Ref. 59. The MATLAB code for the
RNSC algorithm has been downloaded from Ref. 60. The
MATLAB code for the 2-D bilateral filtering algorithm has
been downloaded from Refs. 61 and 62. For 2-D median filter-
ing, the MATLAB function medfilt2 has been used. After
computational experiments, we have selected for the GoDec
algorithm the bound on kSk0 to be 0.1 × ðI1 × I2Þ. For the
SSGoDec algorithm, the sparsity regularization constant has
been selected to be τ ¼ 0.1. For the ELRpSD algorithm in

Eq. (14), respectively, Eqs. (16) to (21), the parameter values
were the following: λ ¼ 5, τ ¼ 0.1, and β ¼ 1. The speckle
reduction algorithms were comparatively tested on 10 three-
dimensional (3-D) macular-centered OCT images of normal
eyes acquired with the Topcon 3-D OCT-1000 scanner. Each
3-D OCT image was comprised of 64 2-D scans with the
size of 480 × 512 pixels. These images have been used previ-
ously for the study for optical intensity analysis in Ref. 57,
where they were segmented into 10 retina layers. We estimated
CNR, contrast, SNR, and sharpness values from the original
image as well as from the images with reduced speckle. The
images were analyzed with software written in the MATLAB™

(the MathWorks Inc., Natick, Massachusetts) script language
on PC with Intel i7 CPU with the clock speed of 2.2 GHz and
16 GB of RAM.

3.2 Comparative Results

Here, we present the results of the comparative performance
analysis among the ELRpSD, GoDec, SSGoDec, RNSC, 2-D
bilateral filtering, and 2-D median filtering algorithms.
Parameters of bilateral filters have been tuned to yield approx-
imately the same CNR value (the same level of speckle reduc-
tion) as the proposed ELRpSD algorithm. The median filtering
has been used with the window of the size 3 × 3 pixels and that
yields slightly higher CNR value than the one achieved by the
proposed ELRpSD method. The size of the window can be
increased to improve the edge fidelity but that would decrease
the CNR, contrast, and SNR values. The algorithms were
applied to each 2-D OCT scan separately. CNR, SNR, contrast,
and sharpness were estimated from each enhanced 2-D scan and
the reported values were averaged over 64 scans for each 3-D
OCT image. Afterward, they were averaged further over 10 3-D
OCT images. Average computation time of the ELRpSD,
GoDec, SSGoDec, RNSC, 2-D bilateral filtering, and 2-D
median filtering algorithms per one 2-D OCT scan is, respec-
tively, given as: 4.51, 11.56, 9.63, 3.40, 11.28, and 0.22 s.
Note, however, that unlike the ELRpSD algorithm, the
GoDec, SSGoDec, and RNSC algorithms required a priori
information of a targeted rank value. Since the true value of
a rank was not known a priori, the GoDec, SSGoDec, and
RNSC algorithms had to be run multiple times for the rank
value within selected range. Clearly, huge computational com-
plexity makes them not competitive in comparison with the
ELRpSD algorithm. We show in Figs. 2, 3, 4, and 5 in respective
order error bars of averaged values of CNR, relative SNR, rel-
ative contrast, and relative sharpness estimated from 10 3-D
OCT images. Thereby, means and standard deviations of relative
SNR values were obtained as follows:

EQ-TARGET;temp:intralink-;e023;63;198

Relative mean SNRð%Þ ¼ 100 ×
meanðSNR of enhanced imageÞ −meanðSNR of original imageÞ

meanðSNR of original imageÞ ; (23)

EQ-TARGET;temp:intralink-;e024;63;153Relative standard deviation SNRð%Þ ¼ 100 ×
stdðSNR of enhanced image − SNR of original imageÞ

meanðSNR of original imageÞ : (24)

Relative values of contrast and sharpness are defined analo-
gously. It can be seen that values of CNR, SNR, and contrast
decrease when rank is increased. That is because with the
increase of rank, influence of noise, which corresponds to

small singular values, is increased as well. However, as seen
from Fig. 5, the sharpness, which measures the edge fidelity,
is increased with the increase of rank. That is because when
low-rank approximation L is based on too few singular values,
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details important for the preservation of edges are lost. That is
why the conflicting requirement of having the high CNR, SNR,
and contrast values on one side and good edge fidelity on
another side makes it difficult to select targeted value of the
rank a priori. In this regard, bilateral filtering and median filter-
ing suffer from the same problem. As can be seen from Fig. 2,
bilateral filtering achieved the same value of CNR and higher
relative SNR value in comparison with the proposed
ELRpSD method, but it yielded reduced relative sharpness in
comparison with the relative sharpness achieved by the
ELRpSD method. The median filtering yielded high values
of CNR, relative SNR, and contrast but destroyed edge fidelity
compared with the original image. In both cases, bilateral filter-
ing and median filtering reduction of the edge fidelity is caused

by the blurring effect when the spatial bandwidth of the filter
becomes too narrow and that is necessary to achieve higher val-
ues of CNR, SNR, and contrast. Thus, capability of the proposed
ELRpSD method to estimate the rank value directly from the
image is very valuable. As can be seen, it achieves the highest
value of relative sharpness (the best edge fidelity) compared
with other algorithms and, in comparison with the original
images, also yields increased values of the CNR, relative
SNR, and relative contrast. The GoDec, SSGoDec, and
RNSC algorithms achieve comparable value of sharpness
with the value of rank equal to 35. At this value of rank,
GoDec and SSGoDec have slightly better value of CNR and
contrast than ELRpSD, while the RNSC is still worse. Thus,
presumably the GoDec and SSGoDec could be used for the

Fig. 3 Values of SNR in percentage (mean ± standard deviation) estimated from enhanced 3-D OCT
images relatively to the SNR of original images. The ELRpSD, bilateral filtering, and median filtering do
not require a priori information on targeted rank value. Thus, their SNR estimates are shown as straight
lines.

Fig. 2 Average CNR values (mean ± standard deviation) estimated from 10 3-D OCT images. The
ELRpSD, bilateral filtering, and median filtering do not require a priori information on targeted rank
value. Thus, their CNR estimates are shown as straight lines.
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speckle reduction on the existing OCT scanner with a rank set to
a predefined value of 35. However, if the OCT images are to be
acquired on a different scanner the GoDec, SSGoDec, and
RNSC algorithms would have to be “calibrated” again. To val-
idate stability of the proposed ELRpSD method, we show in
Fig. 6 relative values of CNR, SNR, contrast, and sharpness esti-
mated for each of 10 3-D OCT image separately. As can be seen
variations of estimated values are within few percentages.

4 Discussion
Large contrast and granular appearance of speckle with an OCT
image of biological specimens reduce contrast and make boun-
daries between constitutive tissues more difficult to resolve.

Thus, speckle stands for a major obstacle in quantitative
OCT image analysis. Since speckle has a dual role as a source
of noise and as a carrier of information about tissue microstruc-
ture its complete reduction is not desirable. Hence, speckle
reduction is a peculiar problem. In particular, it is a challenge
to increase the CNR value, which is used as a figure of merit in
speckle reduction, and preserve image resolution, contrast and
fidelity of edges. In this regard, we have proposed an approach
to speckle reduction, which is based on decomposition of 2-D
OCT scans into low-rank approximation of the “clean” image
and sparse term that takes into account speckle. In particular,
we proposed a method capable of estimating rank on data-driven
or automatic ways directly from the experimental OCT

Fig. 5 Values of sharpness in percentage (mean ± standard deviation) estimated from enhanced 3-D
OCT images relatively to the sharpness of original images. The ELRpSD, bilateral filtering, and median
filtering do not require a priori information on targeted rank value. Thus, their estimates of relative sharp-
ness value are shown as straight lines.

Fig. 4 Values of contrast in percentage (mean ± standard deviation) estimated from enhanced 3-D OCT
images relatively to the contrast of original images. The ELRpSD, bilateral filtering, and median filtering
do not require a priori information on targeted rank value. Thus, their estimates of relative contrast value
are shown as straight lines.
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image. Moreover, the method is using class of nonconvex regu-
larization, which induces sparse approximation of singular val-
ues in the related LRMA problem. That, in turn, yields more
accurate approximation of a rank than what is achieved by
the more often used approximations based on nuclear norm.
As a final result, the proposed method yields the low-rank
approximation of the original OCT images with simultaneously
increased values of CNR, SNR, sharpness, and contrast. That
makes the proposed method suitable for speckle reduction in
OCT images acquired at different scanners.

5 Conclusion
We have developed a method for the speckle reduction in OCT
images and named it the ELRpSD algorithm. The method,
which is applied on individual 2-D OCT scans, was tested on
10 3-D OCT images comprised of 64 scans each. It was able
to simultaneously increase, relative to the original OCT images,
values of CNR, SNR, contrast, and sharpness (improved fidelity
of edges). In particular, the relative improvement, averaged over
10 3-D OCT images, of the CNR, SNR, contrast and sharpness
was in respective order 14.71%, 23.08%, 24.54%, and 14.61%.
Therefore, we conclude that the ELRpSD method can be used as
a preprocessing method for speckle reduction to enable more
accurate quantitative analysis of OCT images.
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